A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation

نویسندگان

  • Peter Poláčik
  • Pavol Quittner
چکیده

We consider the semilinear parabolic equation ut = ∆u+ up on RN , where the power nonlinearity is subcritical. We first address the question of existence of entire solutions, that is, solutions defined for all x ∈ RN and t ∈ R. Our main result asserts that there are no positive radially symmetric bounded entire solutions. Then we consider radial solutions of the Cauchy problem. We show that if such a solution is global, that is, defined for all t ≥ 0, then it necessarily converges to 0, as t →∞, uniformly with respect to x ∈ RN .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation ut = ∆u + |u|p−1u. We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence ...

متن کامل

The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points

In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.

متن کامل

Convergence of anisotropically decaying solutions of a supercritical semilinear heat equation

We consider the Cauchy problem for a semilinear heat equation with a supercritical power nonlinearity. It is known that the asymptotic behavior of solutions in time is determined by the decay rate of their initial values in space. In particular, if an initial value decays like a radial steady state, then the corresponding solution converges to that steady state. In this paper we consider soluti...

متن کامل

Liouville-type theorems and decay estimates for solutions to higher order elliptic equations

Liouville-type theorems are powerful tools in partial differential equations. Boundedness assumption of solutions are often imposed in deriving such Liouville-type theorems. In this paper, we establish some Liouville-type theorems without the boundedness assumption of nonnegative solutions to certain classes of elliptic equations and systems. Using a rescaling technique and doubling lemma devel...

متن کامل

The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space

In this paper‎, ‎the existence and uniqueness of the ‎solution of a nonlinear fully fuzzy implicit integro-differential equation‎ ‎arising in the field of fluid mechanics is investigated. ‎First,‎ an equivalency lemma ‎is ‎presented ‎by‎ which the problem understudy ‎is ‎converted‎ to ‎the‎ two different forms of integral equation depending on the kind of differentiability of the solution. Then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007